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Coupling of symmetric and asymmetric modes in a high-power, high-efficiency
traveling-wave amplifier
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A three-dimensional model has been developed for the investigation of the coupling of symmetric (TM01)
and asymmetric (HEM11) modes in a high-power, high-efficiency traveling-wave amplifier. In the framework
of a simplified model it is shown that the coupling between these two modes is determined by a single
parameter that depends on the beam characteristics. For a specific set of parameters corresponding to operation
at 35 GHz, simulations indicate that an initial HEM11 power of 0.5 MW at the input end is sufficient to deflect
electrons to the wall. The build-up of this parasitic mode is investigated over many round trips of the wave in
the structure and a threshold criterion for self-sustain oscillation is established. Finally a way for suppressing
the HEM11 mode is analyzed.

PACS number~s!: 41.75.Ht
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INTRODUCTION

Theoretical analysis@1# and preliminary experimenta
studies @2# indicate that implementation of a 35 GH
traveling-wave amplifier based on a set of coupled cavit
is feasible. However, beam power requirements and tech
logical constraints push the internal radius of the struct
upwards such that when comparing the vacuum wavelen
with a practical internal radius (Rint), we find that at theKa
bandRint is larger than the simple frequency scaling criteri
dictates. For example, anX-band~say 11.66 GHz! structure
may have a typical internal radius of 7 mm when driven b
beam of 3 mm radius. If we require comparable power lev
carried by the beam for a system operating at theKa band
~35 GHz! then the beam radius can not be reduced belo
mm and the internal radius of the structure may not be
duced below 3.5 mm. This radius is almost by 50% lar
than the simple frequency scaling criterion implies.

The implications of large internal radius regarding ope
tion with the symmetric TM01 mode, were discussed in Ref
@1# and @3#. In this study we shall focus our attention to th
coupling with anasymmetricmode that may develop due t
asymmetries of the electrons’ distribution or asymmetries
the structure~e.g., feed system or output arm! or both. Such
modes are called hybrid electric and magnetic~HEM! modes
and the main problem associated with their presence, is t
ability to deflect electrons to the wall. This phenomenon
well known in the accelerator community@4,5# under the
name of beam break-up~BBU!. On the other hand, big ef
forts are directed in the design of the next linear collid
~NLC! acceleration structure in order to suppress th
modes~see Ref.@6#, and the references therein!.

Recently, pulse shortening was observed in high-po
traveling-wave amplifier experiments conducted at Corn
University @7# and this triggered the current study in whic
we examine to what extent the HEM11 mode contributes to
the beam deflection to the wall in the course of beam-w
PRE 611063-651X/2000/61~4!/4445~5!/$15.00
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interaction in a high-power, high-efficiency traveling-wav
output structure. The build-up of asymmetric modes a
very narrow bunch traverses an acceleration structure is
derstood but, to the best of our knowledge, there is
equivalent analysis corresponding to a traveling-wave am
fier where the longitudinal bunch is of the order of the wav
length, its transverse size is several orders of magnit
larger in the amplifier case comparing to an accelerator
collectiveeffects play a dominant role.

In this study we investigate the main aspects associa
with the operation of a high-power traveling wave amplifi
operating at 35 GHz taking into consideration also the low
asymmetric mode (HEM11!. The extent the HEM11 mode is
destructive, is quantified in terms of increase in the effect
radius of the beam. We also examine the coupling of sy
metric and asymmetric modes when the latter is selectiv
suppressed by specific suppression technique discussed
end of this study.

3D QUASI-ANALYTIC MODEL

Suppose that a bunched beam, generated by either a s
of cavities ~klystron! or a slow wave structure, is injecte
into a uniform disk-loaded periodic structure. The structu
is designed so that the phase velocity of the interacting w
generated by the bunched beam is synchronized to the a
age velocity of the electrons. The main interacting wave
the TM01 mode, but as mentioned before in the Introductio
due to asymmetry that may occur, we assume that one as
metric mode may develop. According to the dispersi
curves, the closest asymmetric mode to the TM01 that may
interact with the beam is the low branch of the HEM11 mode.
In order to analyze the system behaviors, we have to dev
a set of equation describing the dynamics of the system
this work we present a simple quasi-analytic model that
ables quantitative analysis of the interaction of TM01 and the
low branch of HEM11 in the presence of an electron beam
a traveling-wave amplifier. Within the framework of th
4445 © 2000 The American Physical Society
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model the full three-dimensional~3D! motion of the particles
is calculated and their effect on the electromagnetic field
assumed to be only in the longitudinal direction~1D!. Addi-
tional assumptions of the model include: positive group
locity of both modes~TM01 and HEM11!, their basic func-
tional form is preserved, the energy conversion is prima
controlled by the longitudinal motion, and no electrons a
reflected.

The total electromagnetic field propagating along
structure, is composed of three components, the rf field,
dc collective field~space charge!, and the magnetic guiding
field B0 necessary for beam confinement. Bearing in m
that the system operates in steady state, assuming that
mains in a linear regime~single frequency! at all times, using
the Poynting’s theorem and the Newtonian equations of m
tion for the description of particle’s dynamics, the governi
equations read

d

dj S a1

Aa1
D 5Aa1^I 0~ Ḡ1r̄ i !e

2 j x i ,1& i ,

d

dj S a2

Aa2
D 5Aa2^I 1~ Ḡ2r̄ i !e

2 j x i ,21 j f i& i , ~1!

d

dj
x i ,15

V1

bz,i
2K1 ,

d

dj
x i,25

V2

bz,i
2K2 ,

d

dj
g i52

1

2
@a1I 0~ Ḡ1r̄ i !e

j x i ,11a2I 1~ Ḡ2r̄ i !e
j x i ,22 j f i1c.c.#,

d

dj
x̄i5

bx,i

bz,i
,

d

dj
ȳi5

by,i

bz,i
,

d

dj
p̄x,i52Vc

p̄y,i

p̄z,i
1Vp

2 x̄i

2gz,i
2 bz,i

1
F̄x

~r f !

bz,i
,

d

dj
p̄y,i5Vc

p̄x,i

p̄z,i
1Vp

2 ȳi

2gz,i
2 bz,i

1
F̄y

~r f !

bz,i
,

p̄z,i5Ag i
22 p̄x,i

2 2 p̄y,i
2 .

In this set of equations the first two lines include the a
plitude dynamics equations, followed by the phase dynam
equations and the single-particle energy conservation,
last four lines represent the dynamics equations of the
ticles’ transversal location and their normalized moment
p̄x,i[g ibx,i , p̄y,i5g iby,i , andp̄z,i[g ibz,i ; indices 1 and 2
represent the TM01 and HEM11 modes correspondingly;^¯&
represents averaging over entire ensemble of particles.
other definitions used here arej[z/d,x̄[x/d,ȳ[y/d, d is
the total interaction length,V[vd/c,Vc5ecB0d/mc2,

Vp
2[

Ih0

mc2/e

d2

pRbeam

1

bph
,

K[kd,a[eEd/mc2,g i5(12bW 2)21/2,x i ,1 is the phase of the
i th particle relative to the TM01 mode whereasx i ,2 is the
phase of the same particle relative to the HEM11 mode;f i is
is
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the azimuthal location of thei th particle;a1 ,a2 are the cou-
pling coefficients defined asam[(eIZint

m /mc2)(d2/pRint
2 ),m

51,2; Ḡ[AK22V2 and r̄[r /d. Rbeam is the radius of the
beam at the input where it was injected. The interaction
pedance is defined asZint[(pRint

2 )uEu2/2P, whereE is the
amplitude of the zero’s harmonic of the appropriate mo
and P is the total power that flows in the system in th
specific mode. In principle, the coupling coefficienta and
the wave numberK may vary in space, however, in the re
sults that follow, we shall assume that the structure is u
form. The normalized rf forces calculated using Loren
force law are defined as follows:

F̄x,i
~r f ![

Fx
~r f !d

mc2 5AH @ İ 0~ Ḡ1r̄ i !Re~ ja1ej x i ,1!

1 İ 1~ Ḡ2r̄ i !Re~ ja2ej x i ,22 j f i !#cos~f i !

2
I 1~ Ḡ2r̄ i !

Ḡ2r̄ i

Re~a2ej x i ,22 j f i !sin~f i !J
1BH F I 2~ Ḡ2r̄ i !

Ḡ2r̄ i

Re~ ja2ej x i ,22 j f i !Gcos~f i !

2 İ 1~ Ḡ2r̄ i !Re~a2ej x i ,22 j f i !sin~f i !J
F̄y,i

~r f ![
Fy

~r f !d

mc2 5AH @ İ 0~ Ḡ1r̄ i !Re~ ja1ej x i ,1!

1 İ 1~ Ḡ2r̄ i !Re~ ja2ej x i ,22 j f i !#sin~f i !

1
I 1~ Ḡ2r̄ i !

Ḡ2r̄ i

Re~a2ej x i ,22 j f i !cos~f i !J
1BH F I 1~ Ḡ2r̄ i !

Ḡ2r̄ i

Re~ ja2ej x i ,22 j f i !Gsin~f i !

1 İ 1~ Ḡ2r̄ i !Re~a2ej x i ,22 j f i !cos~f i !J , ~2!

where A[2gph(12bz,ibph); B[2 jH0gph(bph2bz,i),
andH0[h0H2 /E2 whereH2 is the magnetic field amplitude
of zero’s harmonic of the HEM11 mode; bph is the phase
velocity of both modes.

SIMULATION RESULTS AND DISCUSSION

Let us first consider the coupling between the modes
to an asymmetry in the beam, ignoring the transverse mot
This enables to determine the spatial growth of the combi
modes. Based on Eq.~1!, the spatial growthof the system
may be deduced by taking twice the derivative of the am
tude equation and substituting in the equation of the moti
the result is
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d3a1

dj3 1
j

2
@~a1V1p1!a11~a1V1U !a2#

>2a1K S V1

b i
2K1D 2

e2 j x i ,1I 0~ Ḡ l r̄ i !L ,

d3a2

dj3 1
j

2
@~a2V2p2!a21~a2V2U* !a1#

>2a2K S V2

b i
2K2D 2

e2 j x i ,21 j f i I 1~ Ḡ2r̄ i !L , ~3!

where

p1[^I 0
2~ Ḡ1r̄ i !~g ib i !

23&,

U[^e2 j ~x i ,12x i ,21f i !~g ib i !
23I 0~ Ḡ1r̄ i !I 1~ Ḡ2r̄ i !&,

p2[^I 1
2~ Ḡ2r̄ i !~g ib i !

23&

and the terms where the phase varies rapidly were negle
Ignoring the two ‘‘noise’’ terms in the right hand side o
both equations, we may calculate the eigenwave numbe
the coupled system, by assuming solutions of the forma1
5ā1e2 jSj anda25ā2e2 jSj, hence

S S31
1

2
a1V1p1

1

2
a1V1U

1

2
a2V2U* S31

1

2
a2V2p2

D S ā1

ā2
D50. ~4!

As clearly revealed by this matrix, the termU represents
the coupling between the cold-structure eigenmodes~TM01
and HEM11!. From its definition it is realized thatU is de-
termined by the correlation between the two pha
(x i ,1 ,x i ,2) and also by the correlation of the azimuthal, rad
and momentum distribution of the electrons. When the c
pling between the modes is zero, each one of the mo
~TM01 and HEM11! develops independently according toS3

1S1
350 or S31S2

350 whereSm
3 [ 1

2 amVmpm . As evident
from Eq. ~3! the coupling between the TM01 and HEM11 is
controlled by a single parameter

ū5AUU*

p1p2

5
u^e2 j ~x i ,12x i ,22f l !~g ib i !

23I 0~ Ḡ1r̄ i !I 1~ Ḡ2r̄ i !&u

A^I 0
2~ Ḡ1r̄ i !~g ib i !

23&^I 1
2~ Ḡ2r̄ i !~g ib i !

23&
~5!

since the solution of the coupled system can be determ
from S31S6

3 50, where

S6
3 52

1

2
~S1

31S2
3!6

1

2
A~S1

32S2
3!214S1

3S2
3ū2. ~6!

In these expressionsS1 corresponds to the HEM11-like so-
lution since at the limitū50,S15S2 whereasS2 corre-
sponds to the TM01-like solution.

The solid-lines in Fig. 1 illustrate the variation of th
ed.
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growth per cell g6[(L/d)20 log10(e
)S6/2) as a function

of the parameterū. The parameters in this simulation a
I 5300 A, V5850 kV, Rint53.5 mm, Rext55 mm,
Rb52 mm, L51.98 mm, f TM01

535 GHz, f HEM11
538.63

GHz, Zint
TM015374 V, Zint

HEM1151.61 kV, and it was assumed
that the electrons have a vanishingly small velocity spre
When the modes are completely correlated (ū51) the spa-
tial growth of the HEM11-like mode is zero whereas th
TM01-like is slightly larger than the case when there is
coupling (ū50). Although, the HEM11-like wave becomes
unimportant, we have to remember that the TM01-like mode
is not a pure TM01 mode but rather a hybrid of TM01 and
HEM11 therefore, the impact of the HEM’s components a
destructive since it has the same spatial growth as the
TM01—they share the same eigen wave number. In orde
illustrate the impact of these two coupled modes on
beam, we consider next the 3D model that enables to ex
ine the development of the beam expansion.

Figure 2 shows the build-up of the HEM11 power at the
input versus the number of round trips for several values
the overall reflection coefficientr ~output and input end! of

FIG. 1. The spatial growth per cell versus the coupling para
eter ū as defined in Eq.~5!. Solid line: growth rate without HEM
mode damping. Dashed line: spatial growth with HEM mode dam
ing (s'0.05).

FIG. 2. The HEM11 input power for several overall reflectio
coefficients~r!, versus number of round trips during the pulse d
ration. During one pass the efficiency of energy conversion into
TM mode approaches the 70% level.
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the structure. The TM01 mode is generated by a modulate
ux i ,1u,7p/18 beam and it reaches efficiencies of 70%;
other parameters are as above and in additiond52.3 cm.
Clearly for sufficiently high overall reflection coefficientr,
the power at the input reaches the 0.5 MW level after or
of 10 round trips in the structure. Here it is tacitly assum
that it is difficult to tune the structure at both frequencies~of
TM and HEM!. Consequently, since the structure is tuned
the frequency of the TM01 mode, the reflection coefficient o
the HEM mode from both ends of the structure is expecte
be relatively large; values of 0.7–0.9 are feasible.

Based on these arguments we may evaluate the thres
current necessary for the occurrence of self-sustain osc
tion of the HEM mode. If the amplitude of the latter at th
input end is A2 , then at the output end it read
A2e2 jK 2(e2 jS1/3)—see Ref.@8#; at this point the wave is
reflected (rout) towards the input end. As it reaches the sta
ing point, the amplitude of the wave read
A2e2 jK 2(e2 jS1/3)route

2 jK 2r in . Ignoring ohmic loss, self-
sustain oscillation may occur if the absolute value of t
quantity is larger thanuA2u consequently, the threshold valu
is determined by the condition Im(S1)52ln(r/3) where the
overall reflection coefficient associated with the HEM mo
is r[ur inroutu. An upper limit of the threshold current ma
be evaluated if we note~based on Fig. 1! that Im(S1)
.Im(S1), namely, the spatial growth rate of the combin
modes is similar to that of the TM01 in the absence of cou
pling. As a result, the necessary condition for avoiding s
sustained oscillation reads

I<I tb.F22

)
lnS r

3D G 3
2

V1p1

pPint
2

d2

mc2/e

Zint
TM01

. ~7!

The overall reflection coefficient~r! is directly related to the
quality factor @QHEM# of the structure by r
5A(Q~HEM!bgr

~HEM!/V221)/(Q~HEM!bgr
~HEM!/V211) where

bgr
~HEM! is the normalized group velocity of the HEM mod

In order to have a measure as of this threshold current
calculated the values corresponding to the simulation res
presented in Fig. 2. Their values areI th(r50.9)5360 A,
I th(r50.8)5480 A, and I th(r50.7)5640 A; in case of a
modulated beam these values may be readily exceeded

FIG. 3. The radius of the envelope for several HEM11 power
levels at the input~kW!.
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Accumulation of electromagnetic power in the asymm
ric mode causes beam’s expansion and eventually elect
may hit the structure’s wall. In order to examine this proce
we shall consider next the interaction during a single pass
a specific HEM power at the input end, allowing transve
motion. Figure 3 shows the radius of beam’s envelo
Re /Rint[2(d/Rint)^ r̄ i&, for several initial HEM11 power lev-
els at the input; the simulation is terminated if one parti
hits the internal radius of the structure. In order to obse
the correlation between this quantity and the coupling
rameterū, defined in the context of the 3D model, we plot
Fig. 4 the latter for the same simulation. As revealed by th
two figures, the correlation between beam’s envelope and
coupling parameter is evident. Moreover, since forPin

~HEM!

50.5 MW the simulation terminates before the end of t
structure (z5d), clearly there are particles that hit the stru
ture. It is important to emphasize that the beam expands e

FIG. 4. The coupling parameter for several HEM11 power levels
at the input~kW!.

FIG. 5. SUPERFISHsimulation of a set of choked loaded cavitie
used to form a periodic structure~periodicity of 1.8 mm, disk thick-
ness of 0.9 nm, phase advance per cell ofp/2, internal radius of 6
nm and stub of 2.2 nm!. The system is designed to operate at
GHz.
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when the HEM11 is ‘‘turned off,’’ however, with the latter
‘‘on,’’ its expansion speeds up.

It is evident from the former results that the HEM11 mode
plays a destructive role during the interaction process.
suppression of the HEM11 mode,selectivedamping may be
introduced, i.e., that is a damping mechanism that is tra
parent to TM01 mode @3,9#. This can be represented by
damping parameter,s, that in the absence of the beam
causes a decay corresponding toe2j/s. Consequently, in the
amplitude equation of the HEM11 mode we may replace
dā2 /dj→dā2 /dj1(1/s)ā2 . Following the same approac
as before we find instead of Eq.~4!

S S31
1

2
a1V1p1

1

2
a1V1U

1

2
a2V2U* S31

j

s
S21

1

2
a2V2p2

D S ā1

ā2
D50.

~8!

The dashed lines in Fig. 1 illustrate the spatial growth
cell ~in dB! in the case of damping the HEM mode~s
'0.05 corresponding to 15 dB per cell in the absence of
beam!. Two facts are evident: first, the HEM11-like mode is
substantially suppressed though as well known in trave
wave tubes role that the damping of the active interactio
lower than the cold attenuation. Secondly, the TM01-like
mode is almost independent of theū indicating that the
TM01-like is close to the pure TM01 mode.

This type of damping may be accomplished by a serie
choked loaded@10# cavities. These have high quality facto
~Q! at the frequency that corresponds to the TM01 mode and
low Q otherwise. Alternative ways of suppression of HE
modes were discussed in Refs.@6, 11, 12# and they include
incoherence of the structure, namely, a structure that lo
periodic to the symmetric mode but nonperiodic to the asy
metric one.
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In order to illustrate the potential of a series of a chok
loaded cavities for the mode suppression we examined
‘‘open cavity’’ with stub tuner. For this example we consid
only symmetric modes thus we useSUPERFISHto calculate
the first four resonances and corresponding quality fact
the electric field distribution at 34.8 GHz is illustrated in Fi
5. The quality factor at 34.826 GHZ was found to be 17
whereas at three other eigenfrequencies 11.1, 22.8, and
GHZ, the quality factor is at least one order of magnitu
smaller, namely, 60, 72, and 112 correspondingly. Althou
these are only symmetric TM modes, we anticipate a sim
behavior for nonsymmetric modes.

CONCLUSIONS

In conclusion, the design of a high-power, high-efficien
traveling-wave output structure should account for the eff
of the asymmetric modes that the beam may interact w
The coupling between the symmetric and asymmetric mo
was shown to be controlled, in the 3D case, by a sin
parameter@see Eq.~5!# that reveals good correlation wit
HEM11 buildup. When substantial power associated with
HEM11 mode accumulates in the output structure, it m
cause deflection of the beam to the wall. A threshold cr
rion was established for the condition~current! necessary for
self-sustain oscillation of the HEM11 mode to occur. And
finally a way for suppressing the HEM11 mode using choke
mode cavity was introduced.
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